JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Analysis of FETI Methods for Multiscale PDEs - Part II: Interface Variation

نویسندگان

  • Clemens Pechstein
  • Robert Scheichl
  • G. Haase
  • B. Heise
  • M. Kuhn
  • U. Langer
  • Michael Kuhn
  • Michael Jung
  • Ulrich Langer
  • Sergei V. Nepomnyaschikh
  • Ralf Pfau
  • Joachim Schöberl
  • CLEMENS PECHSTEIN
  • ROBERT SCHEICHL
چکیده

In this article we give a new rigorous condition number estimate of the finite element tearing and interconnecting (FETI) method and a variant thereof, all-floating FETI. We consider the scalar elliptic equation in a twoor three-dimensional domain with a highly heterogeneous (multiscale) diffusion coefficient. This coefficient is allowed to have large jumps not only across but also along subdomain interfaces and in the interior of the subdomains. In other words, the subdomain partitioning does not need to resolve any jumps in the coefficient. Under suitable assumptions, we can show that the condition numbers of the one-level and the all-floating FETI system are robust with respect to strong variations in the contrast in the coefficient. We get only a dependence on some geometric parameters associated with the coefficient variation. In particular, we can show robustness for so-called face, edge, and vertex islands in high-contrast media. As a central tool we prove and use new weighted Poincaré and discrete Sobolev type inequalities that are explicit in the weight. Our theoretical findings are confirmed in a series of numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Problems in Surface Acoustic Wave Filter Simulations

1 FWF-Start Project Y-192 “3D hp-Finite Elements”, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria [email protected] 2 Radon Institute for Computational and Applied Mathematics (RICAM), Altenbergerstraße 69, 4040 Linz, Austria [email protected] 3 Institute of Computational Mathematics, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria ulanger...

متن کامل

Domain Decomposition Solvers for Frequency-Domain Finite Element Equations

1 Institute for Applied Mathematics and Computational Science, Texas A&M University, College Station, USA, [email protected] 2 Institute of Computational Mathematics, Johannes Kepler University, Linz, Austria, [email protected]; [email protected] 3 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, Austria, ulrich.lan...

متن کامل

Fast parallel solvers for symmetric boundary element domain decomposition equations

C. Carstensen1, M. Kuhn2, U. Langer3 1 Mathematical Seminar, Christian-Albrechts-University Kiel, Ludewig-Meyn-Str. 4, D-24098 Kiel, Germany; e-mail: [email protected] 2 Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-4040 Linz, Austria; e-mail: [email protected] 3 Institute of Mathematics, Johannes Kepler University Linz, Altenberger Str. 69, A-404...

متن کامل

JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Weighted Poincaré inequalities

Poincaré type inequalities are a key tool in the analysis of partial differential equations. They play a particularly central role in the analysis of domain decomposition and multilevel iterative methods for second-order elliptic problems. When the diffusion coefficient varies within a subdomain or within a coarse grid element, then condition number bounds for these methods based on standard Po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997